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Abstract

The possibility of using the spectral vanishing viscosity method for the spectral element computation of high

Reynolds number incompressible flows is investigated. An exponentially accurate stabilized formulation is proposed

and then applied to the computation of the 2D wake of a cylinder. Such a formulation can be easily implemented in

existing spectral element solvers, since only modifying the computation of the viscous term while preserving the

symmetry of the corresponding bilinear form.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

High Reynolds number flows are difficult to compute, especially when using spectrally accurate nu-

merical schemes. This directly results from the fact that spectral approximations are much less numerically

diffusive than low-order ones, so that the non-artificially dissipated energy accumulates at the high spatial

frequencies and finally leads to the divergence of the computations. One way to overcome this difficulty is to

use stabilization techniques, but then the spectral accuracy of the algorithm is generally destroyed. This is,

e.g., particularly obvious for approaches which essentially consist in adding some OðhrÞ hyper-viscous term,

in the spirit of [14]. For a long time filtering techniques have also been proposed to overcome the stability
problem. In the frame of spectral element approximations it is however essential to preserve the inter-el-

ement continuity, as discussed in [2]. One of the most recent advances in this field has been proposed in [6]

(and discussed in [16]) where a spectrally accurate approach is applied to the direct numerical simulation

(DNS) of high Reynolds number flows.

Here we essentially focus on the spectral vanishing viscosity (SVV) method, which appears to be an

efficient stabilization technique possessing the property to preserve the spectral accuracy. It was initially
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developed for the resolution of hyperbolic equations using standard Fourier spectral methods [21]. The

non-periodic case was then considered in the frame of the spectral Legendre approximation [13]. Further

refinements have been recently suggested, through the use of a spectral hyper-viscous (rather than a viscous)
term or through the redefinition of the stabilization term [8]. Recently, it has also been suggested to use the

SVV method, in its first formulation, for the large-eddy simulation of turbulent flows [10,15].

In this paper, our goal is to check the capabilities of the SVV method, in terms of accuracy and stability,

when it is implemented in a Navier–Stokes spectral element solver.

First we show how to implement the SVV method in the frame of a spectral element approximation. The

fact that complex multidimensional geometries and vector valued functions are concerned make this point

non-trivial, so that one cannot yet consider that a standard way to implement the SVV method already

exists. Moreover, we suggest using an approximate form which can be efficiently implemented in any
spectral element solver. The advantage of such an approximate form is that the computational cost per

iteration (time-step if a direct solver is used) is roughly the same with and without SVV stabilization.

Second we consider an elliptic equation solved by a steep analytical solution and show that the con-

vergence results obtained with the spectral element approximation are coherent with those obtained in the

1D periodic case, when using Fourier expansions. A detailed study of the influence of the SVV tuning

parameters on the convergence rates is provided. Then we consider the so-called ‘‘Kovasznay flow’’, which

is an exact solution of the incompressible Navier–Stokes equations, and again check the capabilities of the

SVV method.
Third, in order to numerically demonstrate the stabilization property of the method, we compute 2D

wakes of a cylinder, at Reynolds numbers up to Re ¼ 1000, i.e., much higher than the critical value as-

sociated with the 2D–3D transition (Re � 190).

Finally, we conclude by emphasizing the interest in the SVV-stabilized spectral element method (SEM)

for the large-eddy simulation (LES) of turbulent flows.
2. Stabilized spectral element formulation

The flow of an incompressible Newtonian fluid is governed by the ‘‘incompressible Navier–Stokes

equations’’. For an unsteady flow in a domain X they read:

Dtu� mr2uþrp ¼ s in X� Rþ;
r � u ¼ 0 in X� Rþ;

�
ð1Þ

where u, p and s denote the velocity, pressure and source term, respectively, Dtu the material (Lagrangian)

derivative of u with respect to time t and m the dimensionless viscosity (the inverse of the Reynolds number).

The unsteady Navier–Stokes equations must be associated to appropriate initial and boundary conditions,

e.g. uðt ¼ 0Þ ¼ 0 (fluid at rest) and ujC ¼ 0 (no-slip condition at the boundary C of X), in order to set up a

well-posed problem that one can then try to solve numerically.

If (i) complex geometries are considered and (ii) high accuracy is desired, then the SEM is well suited
(see, e.g. [11]). The spectral element approximation of the weak form of the incompressible Navier–Stokes

equations yields the following semi-discrete variational problem, to be solved at each time-step after the

time-discretization: Find uN 2 XN and pN 2 MN such that

ðDtuN ; vNÞ þ mðruN ;rvNÞ � ðr � vN ; pN Þ ¼ ðsN ; vN Þ 8vN 2 XN ;
ðr � uN ; qN Þ ¼ 0 8qN 2 MN ;

�
ð2Þ

where uN , pN and sN denote the spectral element approximations of u, p and s and where ð�; �Þ is used to

denote the standard L2ðXÞ inner product, without difference if scalar, vectorial or tensorial functions are
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concerned, but of course the second and third cases involve dot-products and contracted products,

respectively.

The computational domain X, assumed to be two-dimensional for the sake of simplicity, is partitioned
into a geometrically conforming decomposition

�X ¼
[K
k¼1

�Xk;
Xk \ Xl ¼ ; 8k; l; k 6¼ l:

The velocity space XN ¼ XN � XN and pressure space MN consist of,

XN ¼ PN ;KðXÞ \ H 1
0 ðXÞ; MN ¼ PN�2;KðXÞ \ L2

0ðXÞ

with standard notations for the Hilbert spaces H 1
0 ðXÞ and L2

0ðX), see, e.g. [1], and with:

PN ;KðXÞ ¼ v 2 L2ðXÞ; vjXksf k 2 PN ðK2Þ; 1
�

6 k6K
�
;

where f k is the transformation function from the reference domain K2, with K ¼ ð�1; 1Þ, to Xk and PN the

space of the polynomials of maximum degree N in each variable. For the reason of simplicity again, ho-

mogeneous boundary conditions have been assumed through the use of the H 1
0 ðXÞ space.

The term involving the material derivative, ðDtuN ; vN Þ, can be handled in different ways. Thus, an implicit

treatment of the time-derivative together with an explicit treatment of the advection term yields the so-

called ‘‘Generalized Stokes problem’’ for the fully discrete version of problem (2). Here our goal is not to
investigate these different ways, but to develop a stabilized spectral element formulation of problem (2),

basically by using the spectral vanishing viscosity method.

2.1. The spectral vanishing viscosity method

For the 1D nonlinear conservation law of the scalar quantity uðX ; tÞ:

otuþ oX ðF ðuÞÞ ¼ 0 in K� Rþ;

where F ðuÞ is a scalar function of u (e.g., F ðuÞ ¼ u2=2), the SVV method consists in solving:

otuN þ oX IN ðF ðuN ÞÞ ¼ �NoX ðQðoX uN ÞÞ; ð3Þ

where uN 2 PNðKÞ and with �N ¼ Oð1=NÞ, where IN denotes the polynomial interpolation onto PN and Q the

spectral viscosity operator such that, with Li for the Legendre polynomial of degree i:

Q/ �
XN
i¼0

Q̂i/̂iLi 8/; / ¼
X1
i¼0

/̂iLi;

with Q̂i ¼ 0 if i6mN and 1P Q̂i P 0 if i > mN . Typical choices for mN are mN ¼ Oð
ffiffiffiffi
N

p
Þ [13] or mN ¼ N=2

[10], whereas for the B€urgers equation theoretical studies rather yield mN < OðN 1=4Þ [13]. For mN < i6N
the numerical experiments show that a smooth variation for Q̂i yields better results. Thus, as in [13] we will

use

Q̂i ¼ exp

 
� N � i

mN � i

� �2
!
; i > mN :
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With vN 2 PN ðKÞ, the weak formulation of the SVV term ��NoX ðQðoX uN ÞÞ reads

VN ¼ �N ðQðoX uN Þ; oX vN ÞL2ðKÞ:

Let us remark that the SVV term may be made symmetric:

VN ¼ �N ðQ1=2ðoX uN Þ;Q1=2ðoX vN ÞÞL2ðKÞ

with the following definition of Q1=2:

Q1=2/ �
XN
i¼0

ffiffiffiffiffi
Q̂i

q
/̂iLi 8/; / ¼

X1
i¼0

/̂iLi:

Indeed

VN ¼ �N

Z 1

�1

QðoX uN ÞoX vN dX ¼ �N

Z 1

�1

XN
i¼0

Q̂i
dðoX uNÞiLiðX Þ

XN
i¼0

dðoX vN ÞiLiðX Þ
" #

dX

¼ �N
XN
i¼0

Q̂i
dðoX uN Þi dðoX vNÞikLik2 ¼ �N

Z 1

�1

XN
i¼0

ffiffiffiffiffi
Q̂i

q dðoX uN ÞiLiðX Þ
XN
i¼0

ffiffiffiffiffi
Q̂i

q dðoX vN ÞiLiðX Þ
" #

dX ;

where we have used k � k to denote the L2ðKÞ norm.

2.2. Preliminaries

In order to implement the SVV method in the spectral element approximation, the two following points

must first be fixed:
• formulation of the SVV method when coordinate transforms are considered,

• formulation of the SVV method in the context of a multidimensional problem.

Up to our knowledge these points were generally overlooked. Thus, some details were given in [9], where

systems of conservation laws were considered. However, the computational domains were in this paper

rectangular, so that the problem of coordinate transforms was not really addressed. A similar remark is also

relevant for our previous works, see e.g. [15], where the geometry was 3D Cartesian. In [10], it seems that a

tensor product was simply used to define the spectral viscosity operator (see [10, Eq. (11)]) and no more

details were given. It should be noticed that the tensor product implementation of the SVV method differs
from what was utilized in [9]. From our point of view, the proper implementation of the SVV method in a

spectral element approximation requires to go into some ‘‘technical details’’, which moreover are not

specific to the Navier–Stokes equations.

Let us consider a coordinate transform, say x ¼ f ðX Þ with x 2 X and X 2 K, and give a meaning to the

SVV term:

VN ¼ �N ðQðoxuNÞ; oxvN ÞL2ðXÞ;

where the �N value may differ from the one used with the reference domain. Of course, we have first to

express oxuN as a function of X 2 K:

oxuN ðxÞ ¼goxgðX ÞoX~uN ðX Þ;

where g is the inverse of f , X ¼ gðxÞ and ~u ¼ usf . From the above form it is possible to compute QðoxuN Þ.
However such an approach is to be rejected, because the goal is in fact to damp the high frequency range of
~uN 2 PN ðKÞ. Thus, in another context of the spectral element method, if the coordinate transform was used
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to accumulate some grid-points in a region of strong variation of the exact solution, then possibly it would

be unnecessary to smooth its numerical approximation uN through the use of a dissipation term. This is why

we state that

QðoxuN Þ �goxgXN
i¼0

Q̂i
dðoX~uN ÞiLi:

When expressed in the reference domain K, the SVV term reads:

VN ¼ �N ðgoxgQðoX~uN Þ; oX fgoxgoX~vN ÞL2ðKÞ ¼ �N ðgoxgQðoX~uN Þ; oX~vN ÞL2ðKÞ: ð4Þ

Such a term can only be made symmetric if oxg is constant, i.e., if g (equivalently f ) is a linear mapping.

In this case, (4) can be written:

VN ¼ �N ðoX f Þ�1ðQ1=2ðoX~uN Þ;Q1=2ðoX~vN ÞÞL2ðKÞ;

where, in order to conform with the definition in (3), �N should be chosen such that:

�N ðoX f Þ�1 ¼ O
1

N

� �
;

that is,

�N ¼ O
Lx

2N

� �
:

where Lx is the length of X.
In the frame of the spectral element implementation, it is highly desirable to handle in any case a

symmetric form. To this end we come back to the case where f is not a linear mapping and introduce the

symmetric bilinear form

V s
N ¼ �N ðgoxgQ1=2ðoX~uNÞ;Q1=2ðoX~vNÞÞL2ðKÞ; ð5Þ

where we may suppose that goxg > 0.

It is clear that the above expression may be written as a weighted inner product:

V s
N ¼ �N ðQ1=2ðoX~uN Þ;Q1=2ðoX~vN ÞÞL2lðKÞ;

where l ¼goxg stands for the weight function. As a result of the equivalence between the L2ðKÞ and L2
lðKÞ

norms (þ1 > l > 0), V s
N ð~uN ; ~uN Þ � VN ð~uN ; ~uN Þ > 0, if ~uN 6¼ 0. Consequently V s

N constitutes a SVV term, in

the sense that it is dissipative and, as VN , controlled by the parameters mN and �N . Of course, its expression is

coherent with the result obtained within the linear mapping assumption for which l ¼ oxg ¼ ðoX f Þ�1
is

constant.

Let us go now to the multidimensional case, e.g., to the 2D case which can easily be generalized to the 3D
one. With uN ; vN 2 PN ðK2Þ the 1D formulation extends in

VN ¼ �N ðQðruN Þ;rvN ÞL2ðK2Þ;

where, for the sake of simplicity, we have kept the same notation for the operator Q acting on vector

functions and scalar functions. However the meaning of QðruN Þ must be clarified; From the 1D scalar

definition of Q we define QðruN Þ as follows:
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QðruN Þ � Q1ðoX uNÞ
Q2ðoY uNÞ

� �
; ð6Þ

where

Q1ðoX uNÞ � QðoX uNð�; Y ÞÞ ¼
XN
i¼0

Q̂ið doX uN ÞiðY ÞLiðX Þ;
Q2ðoY uN Þ � QðoY uN ðX ; �ÞÞ ¼
XN
i¼0

Q̂ið doY uN ÞiðX ÞLiðY Þ

so that dissipative terms arise in both X - and Y -directions, as desired. Moreover, one may easily check that
VN can still be made symmetric:

VN ¼ �N ðQ1=2ðruN Þ;Q1=2ðrvN ÞÞL2ðK2Þ:

Although some details are missing in [9], it seems that the 2D extension of the initial 1D SVV method

proposed in this paper was similar to ours. However, it was a collocation method which was finally used in

[9], so that no symmetrization was carried out.
At this point it is of interest to emphasize that the above definition of Q may be discussed. Thus, using

the 2D Legendre polynomial basis, in K2 one may think to define an operator Q such that

Q/ �
XN
i¼0

XN
j¼0

Q̂ij/ijLiLj 8/; /ðX ; Y Þ ¼
X1
i¼0

X1
j¼0

/ijLiðX ÞLjðY Þ

and the problem is then to provide the Q̂ij. To this end, it is natural to restart from the 1D definition.

However, the tensor product Q̂ij ¼ Q̂iQ̂j must be rejected, because the SVV term would then be only active
if i > mN and j > mN . To see that readily, the SVV term may be detailed, in strong formulation, into:

r � QðruN Þ ¼
XN
i;j¼0

Q̂iQ̂jðð doX uN ÞijL0
iðX ÞLjðY Þ þ ð doY uN ÞijLiðX ÞL0

jðY ÞÞ;

where 0 is used to denote the differentiation. Taking an extreme case where the solution uN depends only on

X , i.e., uN � uNðX Þ, then ð doX uN Þij ¼ 0 if j 6¼ 0, which means that no spectral viscosity acts even in X -di-
rection. This remains true if ðcuN Þij ¼ 0 for j > mN .

One may consider a definition such that the SVV term acts if i > mN or j > mN . This can be achieved for

instance by assuming:

Q̂ij ¼ 1� ð1� Q̂iÞð1� Q̂jÞ ¼ Q̂i þ Q̂j � Q̂iQ̂j:

However, in this case the SVV term reads:

r � QðruN Þ ¼
XN
i;j¼0

ðQ̂i þ Q̂j � Q̂iQ̂jÞðð doX uN ÞijL0
iðX ÞLjðY Þ þ ð doY uN ÞijLiðX ÞL0

jðY ÞÞ;

which may induce a non-desired dissipative term. For example, if uN does not show high frequencies in the

Y -direction, i.e., ðcuN Þij ¼ 0 if j > mN , we obtain

r � QðruN Þ ¼
XN
i;j¼0

Q̂iðð doX uN ÞijL0
iðX ÞLjðY Þ þ ð doY uN ÞijLiðX ÞL0

jðY ÞÞ;

where the second term in the right-hand side should be rejected.
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On the contrary with the definition (6) we obtain

r � QðruN Þ ¼
XN
i¼0

Q̂ið doX uN ÞiðY ÞL0
iðX Þ þ

XN
j¼0

Q̂jð doY uN ÞjðX ÞL0
jðY Þ

so that if uN does not show high frequencies in Y -direction:

r � QðruN Þ ¼
XN
i¼0

Q̂ið doX uN ÞiðY ÞL0
iðX Þ:

To conclude this section, let us consider the case of vector functions. With uN ¼ ðu1; u2Þ, the coherent

extension of our previous definition for scalar functions reads:

QðruN Þ �
Q1ðoX u1Þ Q2ðoY u1Þ
Q1ðoX u2Þ Q2ðoY u2Þ

� �
: ð7Þ
2.3. Spectral element implementation

Let f be the mapping from ðX ; Y Þ, in the reference element K2, to ðx; yÞ in the element Xk and g ¼ f �1, G
the Jacobian matrix of g and J the Jacobian determinant of f (for the sake of simplicity in the notation we

use f ; g; . . . ; rather than f k; gk; . . .). As a result of our previous investigations, the SVV term reads:

VN ¼ �N ðQð ~r~uN Þ~G; ð ~r~vN Þ~GJÞL2ðK2Þ; ð8Þ

where ~r denotes the gradient with respect to the reference domain and with ~u ¼ usf .
This form can only be made symmetric if G is constant and diagonal. Note that if G is constant but non-

diagonal then cross terms arise in the above L2 product, e.g.,Z
K2

~G11

XN
i¼0

Q̂i
dðoX~u1ÞiðY ÞLiðX Þ

 !
J ~G21

XN
j¼0

dðoY~v1ÞjðX ÞLjðY Þ
 !

dX dY 6¼ 0;

where we have used again the notation uN ¼ ðu1; u2Þ. If G is constant and diagonal, that is if the element is a
rectangle, then

VN ¼ �NJðQ1=2ð ~r~uN Þ~G;Q1=2ð ~r~vN Þ~GÞL2ðK2Þ:

Just like in 1D it is of interest to provide a symmetric SVV term valid for any mapping f . To this end we

introduce the symmetric bilinear form

V s
N ¼ �N ðQ1=2ð ~r~uN Þ~G;Q1=2ð ~r~vN Þ~GJÞL2ðK2Þ; ð9Þ

where we may suppose (without loss of generality) that J > 0. With tr for trace, ‘‘:’’ to denote the con-

tracted product and exponent t to denote the transposition, one has:

ðQ1=2ð ~r~uN Þ~GÞ : ðQ1=2ð ~r~vN Þ~GJÞ ¼ trðQ1=2ð ~r~uN Þ~GJGtðQ1=2ð ~r~vN ÞÞtÞ

so that V s
N may be expressed as the sum of inner products of vector valued functions involving the sym-

metric positive definite weight matrix l ¼ ~GJ ~Gt:

V s
N ¼ �N ½ðQ1=2ð ~r~u1Þ;Q1=2ð ~r~v1ÞÞL2lðK2Þ þ ðQ1=2ð ~r~u2Þ;Q1=2ð ~r~v2ÞÞL2lðK2Þ�:

Then, as in the 1D case, V s
N , as defined in (9), constitutes a SVV term.
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Coming back to the Navier–Stokes system, we obtain the following semi-discrete problem: Find uN 2 XN

and pN 2 MN such that

ðDtuN ; vNÞ þ mðruN ;rvNÞ � ðr � vN ; pN Þ þ �N ðQ1=2ðruN Þ;Q1=2ðrvN ÞÞ ¼ ðsN ; vN Þ 8vN 2 XN ;
ðr � uN ; qN Þ ¼ 0 8qN 2 MN ;

�
ð10Þ

where a clear sense has been given to the SVV term. Note that as in 1D, �N must take into account a

characteristic length of the elements. With h such a dimensionless length: �N ¼ Oðh=2NÞ.
Problem (10) can be handled as it stands by SEM. However, for the sake of numerical efficiency, it would

be of interest to couple the computation of the viscous and SVV terms. To this end let us add the viscous

term of the Navier–Stokes equations and the non-symmetric SVV term (8) to obtain

mðruN ;rvN ÞL2ðXkÞ þ VN ¼ mðSð ~r~uN Þ~G; ~r~vN ~GJÞL2ðK2Þ;

where S stands for

S ¼ I þ �N
m
Q

with I for the identity operator.

Then, following an approach similar to the one we have just described, we can introduce the ‘‘viscous

stabilizing term’’, say TN such that:

TN ¼ mðS1=2ð ~r~uN Þ~G; S1=2ð ~r~vN Þ~GJÞL2ðK2Þ: ð11Þ

The spectral element approximation is usually based on a nodal basis. Then this form is easy to im-

plement, since after discretization one has simply to substitute the Legendre differentiation matrix, say D,
by the matrix S1=2D, where S1=2 reads

S1=2 ¼ M�1 diag 1
�

þ �N
m
Q̂i

�1=2
M ;

with M is the passage matrix from physical space to Legendre spectral space. As a result, using such a

‘‘viscous stabilizing term’’ allows us to stabilize the scheme without additional computational time per

iteration (resp., time-step) if an iterative (resp., direct) solver is used for the final system of algebraic

equations.

The stabilized spectral element formulation of the semi-discrete Navier–Stokes system then writes:

ðDtuN ; vNÞ þ mðS1=2ðruN Þ; S1=2ðrvN ÞÞ � ðr � vN ; pN Þ ¼ ðsN ; vNÞ 8vN 2 XN ;
ðr � uN ; qN Þ ¼ 0 8qN 2 MN :

�
ð12Þ

Of course, the usual viscous term is recovered as soon as �N ¼ 0 or mN ¼ N , and if the mappings from K2

to the Xk are linear and diagonal, then the proposed formulation is equivalent to the previous (symmetric or

non-symmetric) ones.

Details on the practical implementation of the viscous term TN are provided in Appendix A.
3. Accuracy tests

In this section, we focus on:
• an elliptic Helmholtz equation, solved by a steep analytical solution, to demonstrate that the

stabilized spectral element approximation retains the exponential accuracy. We begin with the Fourier
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approximation of the standard 1D periodic case and proceed with a 2D problem which we handle with

spectral elements.

• the so-called ‘‘Kovasznay flow’’, which constitutes an exact solution of the incompressible Navier–

Stokes equations.

3.1. Elliptic Helmholtz problem

3.1.1. 1D Fourier test

The basic idea is to consider an exact solution of the form: u ¼ tanhðaxÞ in ð�1; 1Þ. However, tests are

made with the following modified exact solution: u ¼ expð�10x2Þ tanhðaxÞ in order to recover (at least

approximatively) the periodicity. In all our tests a ¼ 50.

Using such an analytical solution we can set up the source term of the following Helmholtz-like
equation:

�mo2xuþ u ¼ s; mP 0:

Two values of m have been considered: m ¼ 0 and m ¼ 1=a2.
Concerning the SVV parameters, we have used the following values of �N and mN :

• �N ¼ 1=N and �N ¼ 1=2N ,
• mN ¼

ffiffiffiffi
N

p
and mN ¼ N=2,

where here N is the maximal wavenumber.

In Fig. 1, we present some accuracy results in both L2 and H 1 norms. Clearly, the errors show an ex-

ponential decay, since in this semi-log representation one observes that the error variations are essentially

linear versus the number of grid-points. The dependence of the results with respect to m appears to be rather

weak. On the contrary, the influence of the characteristic parameters of the SVV method is more important.

Thus, as could be expected, the convergence rate is better when decreasing the value of �N or when in-

creasing the value of mN .

3.1.2. 2D spectral element test

Here, we consider the 2D analogue of the previous 1D test case

�mr2uþ u ¼ s in X ¼ ð�1; 1Þ2;
ujC ¼ uC

in order to check numerically its SVV-stabilized spectral element formulation: Find uN 2 XN , such that

ðuN ; vN Þ þ mðS1=2ðruN Þ; S1=2ðrvN ÞÞ ¼ ðsN ; vN Þ 8vN 2 XN : ð13Þ

For the exact solution, we choose the analytical function:

uðx; yÞ ¼ tanh a

ffiffiffi
2

p

2
ðx

 
� yÞ

!
tanh a

ffiffiffi
2

p

2
ðx

 
þ yÞ

!
ð14Þ

with a ¼ 50 as in the 1D test. Fig. 2 shows the sharp form of this solution.

The computational domain is first partitioned in 10� 10 square elements and we successively study

(i) the influence of the SVV stabilization technique on the accuracy of the SEM solution, (ii) the sensitivity
of the error to the viscosity parameter m and (iii) the dependence of the error on the characteristic

parameters mN and �N of the SVV stabilization.

Second, we consider a deformed mesh and point out that a mesh deformation does not deteriorate the

accuracy properties of the SVV spectral element approximation.



Fig. 1. L2 and H 1 norms of the error with and without spectral vanishing viscosity: m ¼ 1=2500 for the first two diagrams and m ¼ 0

elsewhere, mN ¼
ffiffiffiffi
N

p
for the diagrams at left and mN ¼ N=2 for those at right, �N ¼ 1=2N for the last two diagrams and �N ¼ 1=N

elsewhere.
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Fig. 3 shows some accuracy results (in H 1, L2 and L1 norms) obtained with the stabilized and the non-

stabilized formulations. Here, the SVV method is used with mN ¼ N=2 and �N ¼ 1=N . As expected from the

1D results, even though the SVV-stabilized SEM is less accurate than the SEM, the errors show an ex-

ponential decay when the polynomial degree is increased.
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Fig. 2. Exact analytical solution used in the 2D test.
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In Fig. 4, it is the influence of the viscosity m which is pointed out. Here again, mN ¼ N=2 and �N ¼ 1=N .

Essentially, as for the 1D tests one observes that the results depend only weakly on the value of m: similar

errors are obtained with m ¼ 10�2 and m ¼ 10�4.
In Fig. 5, we study the influence of the spectral viscosity activation parameter mN . The convergence

results have been obtained for the following values of mN :
ffiffiffiffi
N

p
, N=2, 2N=3 and N � 2. The value of �N is

�N ¼ 1=N . Clearly the best results are obtained for mN close to N .

Fig. 6 shows the sensitivity of the error to the viscosity parameter amplitude �N . The value of mN is fixed

to mN ¼ N=2 and results obtained with �N ¼ 1=N and �N ¼ 0:1=N are compared. Note that this last value is

coherent with the theoretical analysis, from which �N ¼ Oðh=2NÞ. It appears that only slightly better results

are obtained with the lower value of �N , with a negligible difference in the convergence rate. Clearly,

changing mN is here much more significant than changing �N . The fact that only low values of N are used in
the spectral element approximation may provide an explanation for this weak dependence of the error on

the �N value.

Let us now point out the influence of a deformation of the mesh. This is especially important as pointed

out in the theoretical part: If the mappings from the reference domain ð�1; 1Þ2 to the spectral elements are

linear and diagonal then the different approaches described in Section 2 are equivalent. The deformed

spectral element mesh is shown in Fig. 7. Here using a non-symmetric SVV term, a symmetrized one or the

stabilized viscous term is no longer equivalent.

Fig. 8 compares the results obtained with the deformed mesh and with the regular one. Here, we have
used mN ¼ 2N=3 and �N ¼ 1=N . One observes that the errors still decrease exponentially as N increases,

which means that the stabilized formulation remains spectrally accurate. Moreover, we note that

the convergence rate is roughly the same for the two considered meshes, i.e., with and without mesh

deformation.
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The main conclusions of the study carried out in this section for the elliptic Helmholtz equation are the
following.

• Although less accurate than the SEM, the SVV-stabilized SEM remains spectrally accurate,

• Using a deformed mesh preserves the exponential convergence property.



Fig. 7. Deformed spectral element mesh.
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3.2. Kovasznay flow

The following velocity and pressure fields:

u ¼ 1

�
� expðkxÞ cosð2pyÞ; k

2p
expðkxÞ sinð2pyÞ

�
and p ¼ �1

2
expð2kxÞ;
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where k ¼ Re=2� ðRe2=4þ 4p2Þ0:5, exactly solve the incompressible Navier–Stokes equations. Just like for

the elliptic Helmholtz problem, it is then of interest to check the influence of the spectral vanishing viscosity

term on the accuracy of the spectral element solution.
Tests have been carried out in the domain X ¼ ð�0:5; 1Þ � ð�0:5; 1:5Þ, with the spectral element mesh

shown in Fig. 9, for Re ¼ 40 and using Dirichlet boundary conditions. Such a test was considered in [10],

where it appeared that the SVV method retains the accuracy of the spectral approximation, on the contrary

of what we have obtained for the elliptic Helmholtz problem.

Our results are presented in Fig. 10, where we show the errors ku� uNk in different norms for

mN ¼ N � 2 and mN ¼ N=2. Clearly, for mN ¼ N � 2, the results obtained with SVV are slightly better than

those obtained without. Thus, although the Navier–Stokes solver is based on an elliptic solver (see Section

4) yielding worse results when the SVV is activated, this Navier–Stokes solver may yield better results with
SVV than without! Moreover, a similar result has been recently obtained for a time-dependent analytical

solution by one of the authors [24]. The nonlinear term may be responsible for such a behavior: Especially,

one may think that the spurious ‘‘high-frequency modes’’ resulting from aliasing effects are damped when

the SVV is activated. Nevertheless, for mN ¼ N=2, one recovers the expected behavior, with a better ac-

curacy when the SVV is not activated, and also slight differences in the convergence rates.

From our point of view the fact that the Kovasznay exact solution is very smooth is misleading. For the

Helmholtz problem, close results can also be obtained with or without SVV, if the solution is too smooth.

Beyond a critical wavenumber, the ‘‘exact solution’’ (within the computational accuracy) is captured, so
that nothing changes if mN is chosen greater than this value. Concerning the results reported in [10], we

think that their implementation of the SVV method together with the fact that the Kovasznay exact so-

lution is much smoother in x-direction than in y-direction may explain why it was found that the spectral

accuracy was retained (cf. Section 2.2). In any cases, at this point of the discussion more numerical ex-

periments are required before going to a conclusion.

In Section 4, the stabilization capabilities of the proposed SVV-stabilized spectral element formulation

are demonstrated through the computation of the 2D high Reynolds number wake of a cylinder.
Fig. 9. Spectral element mesh used to compute the Kovasznay flow.



1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

5 6 7 8 9 10 11

E
rr

or

N

m=N/2, eps=1/N

H1, noV
L8, noV
L2, noV

H1, SVV
L8, SVV
L2, SVV

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

5 6 7 8 9 10 11

E
rr

or

N

m=N-2, esp=1/N

H1, noV
L8, noV
L2, noV

H1, SVV
L8, SVV
L2, SVV

Fig. 10. Kovasznay flow: Errors of u in the H 1, L2 and L1 norms versus the polynomial degree for mN ¼ N=2 (top) and mN ¼ N � 2

(bottom) (�N ¼ 1=N ).

C. Xu, R. Pasquetti / Journal of Computational Physics 196 (2004) 680–704 695
4. Flow past a cylinder

The PN � PN�2 spectral element approximation of the Navier–Stokes system, as briefly described in

Section 2, has been largely used in numerical simulations of incompressible flows in the two last decades.

However, for the reasons mentioned in Section 1, it is also known that stability problems have been
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encountered in the use of SEM for the computation of high Reynolds number flows, especially transitional

laminar-turbulent flows.

To show the efficiency of the proposed SVV-stabilized SEM, several calculations have been carried out
for the flow around an impulsively started circular cylinder, the Reynolds number being varied from

Re ¼ 300 up to Re ¼ 1000. Such 2D flows are of course not physical, since the 2D–3D transition occurs for

Re � 190, but our goal here is only to check the capabilities of the SVV-stabilized SEM in a case where the

standard SEM would not converge for reasonable time and space discretizations.

The temporal discretization is based upon an operator splitting approach in which the nonlinear con-

vective term is decoupled from the viscous and divergence operators via an operation-integration-factor

technique introduced in [12] and studied, e.g., in [4,23]. This temporal discretization results in a saddle point

problem coupling the velocity and the pressure, which is decoupled later via an additional splitting step.
Such an algorithm was analyzed and applied to various computations in [4,5,18]. The approach has a

common root with traditional projection approaches which lead to a Poisson equation for the pressure

except that, in the present case, the splitting is done for the discrete form of the equations, and therefore no

boundary conditions are needed for the pressure.

Dirichlet boundary conditions, i.e., uN ¼ ð1; 0Þ, have been assumed everywhere except at the outlet of the

computational domain where ‘‘Orlanski�s outflow boundary conditions’’, otuþ U1 � ru ¼ 0, have been

imposed, where U1 is the free stream velocity (see, e.g. [22] for details). At time t ¼ 0 the fluid is at rest, i.e.,

the initial condition simply reads uN ¼ 0.
Fig. 11 shows the macro-element mesh used in the calculations. Finer elements have been chosen at the

cylinder surface for a better resolution of the boundary layer. In all our calculations, the number of the

elements has been fixed to K ¼ 310. Mesh notation Nx means using polynomial degree x in each element.

The Reynolds number is defined as Re ¼ U1D=m, where D is the cylinder diameter. In this domain de-

composition, using the standard SEM we were unable to compute flows at ReP 500 at any reasonable

resolution. For example,

• at Re ¼ 500: The N6 computation diverges at t ¼ 5:9, N10 diverges at t ¼ 15:9 and N12 diverges at

t ¼ 16:4;
• at Re ¼ 1000: N6 diverges at t ¼ 1:9, N12 diverges at t ¼ 9:84 and N16 diverges at t ¼ 11:01 (moreover,

this last computation was very costly).

By contrast, using the SVV-stabilized formulation with mN ¼ 2N=3 and �N ¼ 1=N , for example, we were

able to compute all these flows for all the above-mentioned polynomial approximations. Hereafter we study

the influence of the parameters N , mN and �N , by focusing on a sensitive computational result: the vorticity
Fig. 11. Spectral element mesh using 310 elements with 7� 7 Gauss–Lobatto–Legendre grid-points. The height of the computational

domain equals 7.2 and the distance from the cylinder axis to the outflow boundary equals 12.
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variations at the cylinder surface during the development of the wake. Such vorticity variations are par-

ticularly of interest, to be sure that the use of a ‘‘viscous stabilizing term’’ would not deteriorate the nu-

merical results in those regions of the flow dominated by viscous effects, especially the boundary layer
around the cylinder.

4.1. Influence of the polynomial approximation degree

Here, we check the spatial resolution, i.e., the sensitivity of the results to an increase of the polynomial

approximation degree. Several values of the polynomial degree have been used in the calculation at

Re ¼ 1000. In this space discretization study, the SVV parameters have been fixed to mN ¼ 2N=3 and

�N ¼ 1=N .
In Fig. 12, we compare the vorticity distribution at the cylinder surface calculated, at time t ¼ 6, with

different values of N . Also shown is a result given in [19] for comparison. For N ¼ 6, the resolution seems to

be inaccurate, but already comparable with the one of [19]. However, the convergence is obvious by in-

creasing N : For N varying from N ¼ 8 to 16 the results are very close, indicating that for N P 8 the grids are

fine enough to capture all the flow structures.

The vorticity isolines at t ¼ 4 and t ¼ 6 are shown in Fig. 13 for the cases N6, N8 and N12. Clearly, the

N6 grid is not fine enough to give smooth vorticity contours. For N8 and N12, although one observes slight

differences close to the cylinder surface, the vorticity fields compare well.

4.2. Influence of the SVV tuning parameters

Here, we check the effect of the parameters �N and mN on the computational results, with comparison to

the ‘‘reference result’’ obtained with the very fine grid N16, the SVV parameters being mN ¼ N � 2 and

�N ¼ 1=N .
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Fig. 13. Vorticity isolines for different meshes, N ¼ f6; 8; 12g at times t ¼ 4 at left and t ¼ 6 at right (Re ¼ 1000).

698 C. Xu, R. Pasquetti / Journal of Computational Physics 196 (2004) 680–704
Fig. 14 shows the vorticity variations at the cylinder surface, at t ¼ 6, computed with �N ¼ 1=N and

�N ¼ h=2N , mN being fixed to mN ¼ 2N=3, where h ¼ 1=7:2 equals the ratio of the cylinder diameter to the

domain height. These variations are compared to the reference ones. One observes, for N ¼ 6 and N ¼ 9 in

the figure, that the choice �N ¼ h=2N gives better results. When increasing the value of N , the curves get

closer to the reference one. Thus, for N ¼ 12 (not shown), one can no longer discern the three curves.

In Fig. 15, where again N ¼ 6 and N ¼ 9, the vorticity distribution at the cylinder surface is plotted for

mN ¼ N=3 and mN ¼ N � 2, with �N ¼ 1=N . A better result is obtained by using a higher value of mN , i.e.,
mN ¼ N � 2. This difference is in fact less significant when a smaller �N (i.e., �N ¼ h=2N ) is used. For larger

values of mN and/or smaller values of �N , it is still possible to get a SVV stabilization effect. However, for the

considered test-case we have checked that the value mN ¼ N � 2 was the maximal one: For mN ¼ N � 1, the

calculations were not stable.

Better results are thus obtained when decreasing the amplitude �N or when increasing the SVV activation

parameter mN . However, it is remarkable that even for a large values of mN the SVV stabilization can still

remain efficient. The value mN ¼ N � 2 is indeed much greater than what could be expected from the

theoretical studies carried out for the B€urgers equation.



-60

-40

-20

0

20

40

60

0 20 40 60 80 100 120 140 160 180

vo
rt

ic
ity

surface angle

N=6

reference
eps=h/2N

eps=1/N

-60

-40

-20

0

20

40

60

0 20 40 60 80 100 120 140 160 180

vo
rt

ic
ity

surface angle

N=9

reference
eps=h/2N

eps=1/N

Fig. 14. Surface vorticity distribution for N ¼ 6 (top) and N ¼ 9 (bottom), �N ¼ h=2N and �N ¼ 1=N with mN ¼ 2N=3 (t ¼ 6,

Re ¼ 1000).

C. Xu, R. Pasquetti / Journal of Computational Physics 196 (2004) 680–704 699
4.3. Long time behavior

The stabilization effect of the SVV term is furthermore confirmed by the long time simulation of the

unsteady wake at Re ¼ 1000. The N12 mesh is used for the simulation and the time-step equals 0.02, using
five sub-time-cycles in the transport step. No artificial perturbation was applied to the flow to initiate the

vortex shedding. The SVV parameters used in the computation are �N ¼ 1=N and mN ¼ N � 2. Fig. 16
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shows the vorticity isolines at time t ¼ 160, 162, i.e., approximatively on a half-period, to clearly visualize

the well-known vortex shedding phenomenon. The corresponding streamlines are shown in Fig. 17. From

the time evolution of the cross-flow velocity, we obtain a Strouhal number (dimensionless frequency) of

0.251. This result is in good agreement, although slightly higher, with those of [19] and the references

therein (see [19, Table 1]).
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Fig. 16. Vorticity contours for Re ¼ 1000 at t ¼ 160 and t ¼ 162 using SVV-stabilized SEM with �N ¼ 1=N and mN ¼ N � 2

(�104 < x < 104, 80 equidistant levels).
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Let us conclude this section as follows: the SVV-stabilized SEM allows us to compute flows out of reach

of the standard SEM and the best accuracy is obtained for the highest values of mN and the smallest of �N .
As a result, for a particular mesh, we should take �N minimal and mN maximal whenever the calculation is

stable. For a given problem and computational mesh, there exist of course critical values of �N and mN

beyond which the SVV-stabilized SEM is no longer stable. Thus, the computation with �N ¼ h=2N and

mN ¼ N � 1 is not stable, but (�N ¼ h=2N , mN ¼ 2N=3) and (�N ¼ 1=N , mN ¼ N � 2) are stable. Until now

we do not know how to select the most satisfactory values of �N and mN for a particular simulation. This

crucial point will be further investigated in the future.
5. Concluding remarks

The highly accurate computation of high-Reynolds number flows is of real interest for both fundamental

studies, e.g., concerned with the transition to turbulence, and engineering applications, which generally

involve non-laminar flows. When using spectral elements the computation of such flows is a challenging

task, as a result from the fact that they are much less affected than low order methods by numerical dif-

fusion. On the grounds of the SVV method, initially introduced for 1D conservation laws, we have pro-

posed a new approach resulting in a stabilized formulation of the SEM for the Navier–Stokes equations. It
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Fig. 17. Streamlines for Re ¼ 1000 at t ¼ 160 and t ¼ 162 using SVV-SEM with �N ¼ 1=N and mN ¼ N � 2 (�3:75 < w < 3:75, 40

non-equidistant levels with x3 distribution).
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should be mentioned that this formulation yields an algorithm which can be easily implemented in any

spectral element solver and which does not require additional computational time per iteration, the sta-

bilization term being included in the viscous term.

First, a detailed study of the convergence properties of the SVV-stabilized SEM has been provided for

the Helmholtz-elliptic solver. Using a steep analytical solution, it has been shown that the exponential

property of the spectral method is preserved although if the convergence rate worsens. However, this may
be no longer true for the Navier–Stokes equations, when a smooth analytical solution is considered: For the

Kovasznay flow, we have found that with a high value of the SVV activation parameter the results could be

slightly better when the SVV is activated.

Second, to demonstrate the stabilization capabilities of the SVV-stabilized SEM for the Navier–Stokes

equations, we have computed the wake of a cylinder at high Reynolds number and again, the influence of

the SVV parameters on the results has been pointed out.

Beyond the computation of high Reynolds number flows, the algorithm that we propose is well adapted

to the LES of turbulent flows and the interest in the SVV method for LES was, e.g., outlined in [3,10,15].
The SVV-stabilized SEM may then be used as a no-model approach, i.e., no modeling of the sub-grid scale

tensor which results from the spatial filtering of the Navier–Stokes equations. However, it can also be

combined with such a modeling, then providing a way to avoid a non-controlled mixing between the

modeling adjustments and the numerical approximation errors. Thus, in [3,15] a SVV stabilization is used
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together with an approximate deconvolution technique [7,20]. In the frame of 3D spectral, Chebyshev–

Fourier computations of the turbulent wake of a cylinder, some comparisons of the two possible routes are

provided in [17], but of course, numerous detailed studies are still needed. In this frame, our goal is to apply
the SVV-stabilized SEM to LES of complex turbulent flows, with or without sub-grid scale modeling, and

thus provide additional contributions to the challenging topic of their highly accurate computations.
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Appendix A

Here, we give the details of the implementation of the elemental (i.e., before stiffness summation)

‘‘viscous stabilizing term’’ TN . The approach described here follows what is usually done when a nodal basis

is chosen.

The space XN is first splitted into X1
N and X2

N , XN ¼ X1
N � X2

N , such that X1
N (resp., X2

N ) contains vectors

with only the first (resp., the second) component non-equal to zero.
Second, the Lagrangian basis is used to span X1

N and X2
N , which vector fields may be assimilated to scalar

fields.

Third, in each element Xk; k ¼ 1; . . . ;K, the inner products are approximated by using the Gauss–

Lobatto quadrature formula.

Let us focus on test-functions belonging to X1
N and again denote u1 2 X 1

N and v1 2 X 1
N the first component

of uN and vN , respectively. The corresponding viscous term, say T 1
N , can be written as

T 1
N ¼ m

XN
i;j¼0

F1S1=2ðoX eu1ÞS1=2ðoX ev1Þh
þ F2S1=2ðoY eu1ÞS1=2ðoY ev1Þ þ F3ðS1=2ðoX eu1ÞS1=2ðoY ev1Þ

þ S1=2ðoY eu1ÞS1=2ðoX ev1ÞÞiðnijÞ qij

JðnijÞ
;

where nij ¼ ðni; njÞ, qij ¼ qiqj with ni; qi; i ¼ 0; . . . ;N denoting the Legendre–Gauss–Lobatto points and

corresponding weights in ½�1; 1�. F1; F2; F3 are three geometric factors, defined as

F1 :¼ oY f1ð Þ2 þ oY f2ð Þ2 ¼ J 2 oyg1
	 
2h

þ oxg1ð Þ2
i
;

F2 :¼ oX f1ð Þ2 þ oX f2ð Þ2 ¼ J 2 oyg2
	 
2h

þ oxg2ð Þ2
i
;

F3 :¼ � oX f1oY f1ð þ oX f2oY f2Þ ¼ J 2 oyg2oyg1
�

þ oxg2oxg1
�
;

where f1 and f2 (resp., g1 and g2) are the components of the mapping f (resp., g).
Choosing now for each test function v1 2 X 1

N the Lagrangian polynomial hmn, such that
hmnðni; njÞ ¼ dmidnj (d, Kronecker symbol) and expressing u1 in this Lagrangian basis, we arrive at the matrix

statement of T 1
N . For the element Xk, with uij for u1ðni; njÞ and DS ¼ S1=2D, where D is the usual differen-

tiation matrix:
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T 1
Nðm; nÞ ¼ m

XN
i¼0

qin

jJðninÞj
F1;inðDSÞim

XN
p¼0

ðDSÞipupn

 !
þ m

XN
j¼0

qmj

jJðnmjÞj
F2;mjðDSÞjn

XN
q¼0

ðDSÞjqumq

 !

þ m
XN
j¼0

qmj

jJðnmjÞj
F3;mjðDSÞjn

XN
p¼0

ðDSÞmpupj

 !
þ m

XN
i¼0

qin

jJðninÞj
F3;inðDSÞim

XN
q¼0

ðDSÞnquiq

 !
8m; n ¼ 0; . . . ;N :
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